
The Nested–Drift Algorithm
A New Solution Approach to Continuous Time Problems with

Multiple Endogenous State Variables

Soroush Sabet Patrick Schneider

September 22, 2025

Preliminary and incomplete

Abstract

We introduce a new algorithm for solving continuous time problems
with multiple endogenous state variables in a finite–difference scheme.
The algorithm extends the logic of up–winding to its logical extreme in
a way that meets the necessary conditions for local convergence (Barles
and Souganidis, 1991). It is consistent because the directions of state–
drift are never in conflict, and constraints are applied non–linearly. It is
efficient because it nests the search for these state–drifts in a way that
ensures costly root–finding is only performed after other alternatives
are exhausted. The algorithm improves on the existing ‘split–drift’
approach from (Kaplan et al., 2018; Achdou et al., 2022), which can
fail under some parameter settings because it is not guaranteed to be
consistent.

1

1 Introduction
We present a new numerical algorithm for solving finite–difference, continu-
ous time problems of agents with two endogenous state variables. The key
to the algorithm is to nest the treatment of the state drift within each other.
Doing so ensures there are no conflicting assumptions in drift, and allows
us to treat constraints non–linearly. As a result, the algorithm is consistent
and monotone, and so local convergence to a viscosity solution is guaranteed,
following Barles and Souganidis (1991).

The most common example of the model to which this algorithm applies is
a household with two assets and adjustment costs for transacting between
them, as in Kaplan et al. (2018). In the following, we use a simplified version
of the household block in their model to demonstrate the algorithm.

The algorithm works by extending the approach of upwinding (Achdou et al.,
2022) to its logical extreme—at each point in the state–space, optimal policy
functions are calculated using numerical derivatives of the value function that
correspond to the endogenous direction in drift for both states, ex–post1.

Dealing with drift directions state–by–state also allows us to avoid conflicting
assumptions, and also to impose constraints in a more non–linear way. The
combination of all these things is a scheme that is consistent and monotone,
and so converges for a starting guess sufficiently close to the solution.

To get a good starting guess, we employ a ‘tentative–guess’ algorithm, which
attempts a solution, but slows updating dramatically for a period when one
cannot be reached, after which it accelerates exponentially again; repeating
this process recursively, restarting after failures at the last slow update, tends
to lead to convergence. Using such procedures seem to be folk–wisdom in
the profession, though we are not aware of a proof for why they work, and
nor do we provide one.

The paper proceeds as follows. In Section 2 we detail the model that will be
our working example. In Section 3 we detail the solution algorithm, providing
a proof that the nested–drift algorithm is consistent and monotone. We
implement the algorithm in Section 4 and plot the results. In Section 5 we

1This is not the case in the drift–splitting algorithm proposed by Kaplan et al. (2018),
which we find leads to solution failures for some parameters that our algorithm can solve.

2

compare our algorithm to the alternative ‘split–drift’ approach in Kaplan
et al. (2018), showing that the our approach is robust to parameter choices
under which the latter fails. Section 6 concludes.

2 The model
In this section we detail the model we will use for our worked example of
the algorithm. The logic of the algorithm extends to any setting with two
endogenous state variables.

A household chooses consumption and transfers between their liquid and
illiquid assets to maximise the present–value of utility.

max
{ct,dt}t≥0

E0

∫ ∞

0

e−ρtu(ct)dt

subject to budget constraints

ḃt = (1− ξ)wzt + rb(bt)bt − dt − χ(dt, at)− ct

ȧt = raat + ξwzt + dt

with borrowing limits

bt ≥ b, at ≥ 0

where at, bt denote illiquid and liquid assets, respectively, ct is consumption, zt
is the idiosyncratic productivity which is considered to be a two-state Poisson
process with intensities λ(z, z′) 2, dt is the depositing rate and χ(d, a) the
transaction cost function. The wage is denoted by w, the return on illiquid
asset is ra and the return on liquid asset is rb. Finally we assume that a
fraction ξ of income is automatically deposited in the illiquid account (e.g.
capturing automatic payroll deductions into a retirement account).

Following Kaplan et al. (2018), we assume transactions between the two
accounts attract adjustment costs with the functional form:

χ(d, a) = χ0|d|+
χ1

2

(
d

a

)2

a (1)

2The code is written for Poisson processes with any finite number of states Nz

3

Where χ0 ∈ (0, 1) and χ1 > 0. The two components of the adjustment cost
function have different implications for the household behaviour:

1. The linear cost component creates inaction,

2. The convex component creates finite deposit rates, eliminating jumps

In what follows let g(d, a) denote the net effect of deposit policy d on the
liquid resources of an agent who has illiquid wealth a

g(d, a) = d+ χ(d, a) (2)

Note that there is a natural minimum to the optimal deposit policy

d =
χ0 − 1

χ1

a < 0 (3)

This is the point beyond which the marginal cost of withdrawing is greater
than 1; any transfers from the illiquid to the liquid asset lower than this point
will actually reduce liquid assets, destroying resources.

Further, as identified in Kaplan et al. (2018), it is necessary to set ra < 1−χ0

χ1

to ensure households don’t optimally accumulate illiquid wealth to infinity. If
this condition is not met, the flow return on the illiquid asset (raa) is greater
than d3.

2.1 The HJB Equation & analytical solution

The HJB equation for the problem is

ρV (a, b, z) = max
c,d

u(c) + Vb(a, b, z)(r
b(b)b+ (1− ξ)wz − d− χ(d, a)− c)

+ Va(a, b, z)(r
aa+ ξwz + d)

+
∑
z′

λ(z, z′)(V (a, b, z′)− V (a, b, z))

The first order conditions are

u′(c) = Vb(a, b, z) (4)
Vb(a, b, z)(1 + χd(d, a)) = Va(a, b, z) (5)

3There are inflows from the wage as well, but these are assumed minor at higher asset
levels, and so ignored.

4

where

χd(d, a) =

{
χ0 + χ1d/a, d > 0

−χ0 + χ1d/a, d < 0

And rearranging these we arrive at the updating equations for consumption:

c = (u′)−1 (Vb) (6)

and deposits

d =

(
Va

Vb

− 1 + χ0

)−
a

χ1

+

(
Va

Vb

− 1− χ0

)+
a

χ1

(7)

Where (·)+ := max{·, 0} and (·)− := min{·, 0}. Note that this policy implies
the inaction region d = 0 if −χ0 < Va

Vb
− 1 < χ0. Combining the two FOC,

we can frame the deposit policy in terms of optimal consumption

d =

(
Va

u′(c)
− 1 + χ0

)−
a

χ1

+

(
Va

u′(c)
− 1− χ0

)+
a

χ1

(8)

These conditions describe interior solutions. The state boundary constraints
are dealt with in the algorithm, rather than imposed here, our first departure
from the standard approach (Achdou et al., 2022).

3 Numerical Solution
We implement this model in a discrete approximation with (I, J,Nz) denoting
the number of liquid grid points, illiquid grid points, and exogenous income
states, respectively4. The algorithm uses the standard structure detailed in
Achdou et al. (2022) where we (1) start with a guess for the value, (2) update
policies using the numerical derivative calculated from the guessed value, then
(3) use these policies to create a discrete upwind transition matrix5, and (4)
use this matrix to solve implicitly for the updated value function, repeating
this process until convergence in the value.

4These grids can be linear or non-linear, an option allowed in the provided code
5More precisely, discretised infinitesimal generator for the value function.

5

The insight we bring is to Step (2). Solution algorithms need to ensure that
numerical derivatives used to calculate policies are appropriate, but there are
infinitely many derivatives one could use between the bounds of a forward
and backward derivative. To this end, up–winding is recommended—using
the numerical derivative in the direction that leads to a policy function that
reproduces endogenous state drift in the originally assumed direction. In a
one–asset environment, an example of an upwind scheme is to assume first
that the saving rate will be positive, and so to use the forward numerical
derivative of the value; if the consumption policy based on this derivative
delivers positive savings, then this is the policy that is used, otherwise the
next step is to assume negative saving, and so on. Up–winding is simple with
one endogenous state variable but it becomes complicated with more than
one.

The key insight in our approach is to extend the logic of up–winding in
a comprehensive way for more endogenous state variables, and to do this
efficiently by delaying expensive root–finding computations until we are sure
they’re needed. The following details the step–by–step implementation of
the algorithm for the model outlined in Section 2.

3.1 Updating the policy functions: the nested–drift al-
gorithm

For a starting value function V n−1
ijk := V n−1(bi, aj, zk), and for each point6 in

the grid (ijk):

1. Calculate key objects:

− Zero illiquid drift deposit d̃ijk = −(raaj + ξwzk)

− Minimum rational deposit dijk =
χ0−1
χ1

aj

6In practice, this can be vectorised, and the provided Matlab code does so as much as
is feasible, or parallelised.

6

− Directional derivatives

V F
b =

V n−1
(i+1)jk − V n−1

ijk

bi+1 − bi
∀i < I and V B

b =
V n−1
ijk − V n−1

(i−1)jk

bi − bi−1

∀i > 1

V F
a =

V n−1
i(j+1)k − V n−1

ijk

aj+1 − aj
∀j < J and V B

a =
V n−1
ijk − V n−1

i(j−1)k

aj − aj−1

∀i > 1

2. Assume forward liquid drift (skip if i = I due to state constraint):

First assume forward liquid drift, where the policies are (cF , dF) and
they should lead to

ḃijk = rbijkbi + (1− ξ)wzk − cF − dF − g(dF , aj) > 0

Find the policies (suppressing subscripts for the remainder of the algo-
rithm for clarity, as they all read ijk):

(a) Consumption comes from FOC equation (6)

cF = (u′)−1
(
V F
b

)
(b) There are two possible deposit policies, both from FOC equation

(7), depending on the illiquid drift they create. We label these
policies dFF and dFB where the first superscript denotes the drift
of the liquid asset they’re associated with and the second the drift
in the illiquid asset. Because we have assumed liquid drift is for-
ward, the two potential deposit policies are therefore

dFF =

(
V F
a

V F
b

− 1 + χ0

)−
a

χ1

+

(
V F
a

V F
b

− 1− χ0

)+
a

χ1

dFB =

(
V B
a

V F
b

− 1 + χ0

)−
a

χ1

+

(
V B
a

V F
b

− 1− χ0

)+
a

χ1

Impose illiquid state constraints if j ∈ {1, J}

dFF
j=J = d̃

dFB
j=1 = d̃

7

Now define dF using the policy consistent with its assumed drift

dF =


dFF if dFF > d̃

dFB if dFB < d̃

d̃ otherwise

These conditions are mutually exclusive and collectively exhaus-
tive, provided V is concave in a: for a given Vb, equation (7) is
increasing in Va; with V concave in a then V B

a > V F
a so dFF < dFB.

Hence the possible cases are d̃ < dFF < dFB, dFF < dFB < d̃, or
neither (dFF < d̃ < dFB), as above.

Now that the conditional policies are known, check whether they’re
consistent with the assumption of forward liquid drift.

(a) Define the asset drift coming from both policies

sFb = rbb+ (1− ξ)wz − cF − g(dF , a)

sFa = raa+ ξwz + dF

(b) If sFb > 0 then the assumption is upheld, and these are the true
policies cijk = cFijk, dijk = dFijk, sa,ijk = sFa,ijk and sb,ijk = sFb,ijk
Move on to the next point in the state space.

(c) Otherwise if sFb ≤ 0 then the assumption is not upheld, and we
move on to check for backward liquid drift.

3. Assume backward liquid drift (skip if i = 1 due to state constraint):

Apply equivalent steps to the above, but using the backward liquid
derivative in place of forward i.e. replacing V F

b with V B
b .

If the conditional policies are consistent with backward drift, these
are the correct policies. Otherwise, move on to the zero liquid drift
assumption.

4. Assume zero liquid drift:

Assuming zero liquid drift, consumption is determined by the deposit
policy

c0 = rbb+ (1− ξ)wz − g(d0, a)

8

so this deposit policy (d0) is all we need to find. Furthermore, because
we know the consumption policy, we can infer the value derivative with
respect to the liquid asset from equation (4)7

Vb = u′ (c0)
The optimal deposit policy d0 will therefore be defined implicitly by
substituting these objects into the no–arbitrage first order condition,
equation (5)

u′ (rbb+ (1− ξ)wz − g
(
d0, a

))
gd

(
d0, a

)
= Va

To help identify this implicit policy, define a state–dependent function
of the deposit policy

F (d, Va) = u′ (rbb+ (1− ξ)wz − g (d, a)
)
gd (d, a)− Va

This function will be

− negative at d = d because gd(d, a) = 0 and Va > 0,

− infinitely positive for finite d∗ > 0 due to the Inada condition, and

− monotonically increasing in the range d ∈ [d, d∗]

So a solution F (d0, Va) = 0 is guaranteed, but we need to go carefully
about finding it because of kinks caused by the cost adjustment cost
function at d = 0, discrete approximation errors around d = d̃, and the
need to use the appropriate directional derivative in place of Va.

We proceed by checking different segments of the potential range of
d one at a time, to cover all the possible special cases created by the
adjustment inaction region and the difference in forward and backward
illiquid value derivatives. The cases, and the order they’re considered
in, are outlined in table (1).

The algorithm proceeds as follows, for all a unless at the top of the
illiquid state grid.

(a) Check whether F (0, V F
a) < 0. If so, d0 should be positive; use a

root-finding method to find F (d0, V F
a) = 0 in the range d ∈ [0, d̄]

where d̄ is the deposit rate that would imply negative consumption
if ḃ = 0. Otherwise, continue.

7This will respect the FOC because c0 ∈ [cB , cF], proof Appendix A.

9

Table 1: Cases when ḃ = 0
ȧ > 0 ȧ = 0 ȧ < 0

d > 0 (1) n.a. n.a.
d = 0 (2) n.a. n.a.
d < 0 (3) (4) (5)

(b) Check whether F (−ε, V F
a) < 0 for a vanishingly small ε. If so

(combined with the previous results) d0 = 0. Otherwise, continue.

(c) If d̃ > d

i. Check whether F (d̃, V F
a) < 0. If so, use a line–search method

to find F (d0, V F
a) = 0 in the range d ∈ [d̃, 0]. Otherwise,

continue.

ii. Check whether F (d̃, V B
a) < 0. If so, d0 = d̃. Otherwise,

continue.

iii. If a = 0 then impose the state constraint d0 = d̃. Otherwise,
continue.

iv. Use a line–search method to find F (d0, V B
a) = 0 in the range

d ∈ [d, d̃]

(d) If d̃ ≤ d

i. Check whether F (d, V F
a) < 0. If so, use a line–search method

to find F (d0, V F
a) = 0 in the range d ∈ [d, 0]. Otherwise,

continue.

ii. Use a line–search method to find F (d0, V F
a) = 0 in the range

d ∈ [d, d̃]

If a is at the top of the illiquid state grid, we need to impose state
constraint where appropriate.

(a) Check whether the solution is in the down–drift region i.e. both
d̃ > d and F (d̃, V B

a) > 0 are satisfied. If so, use a line–search
method to find F (d0, V B

a) = 0 in the range d ∈ [d, d̃]. Otherwise,
continue.

10

(b) Set d0 = d̃ to ensure no upward drift at the top end of the state
grid (note this will sometimes mean setting d0 < d).

With d0 defined, we can calculate c0, and verify that

V F
b ≤ u′ (c0) ≤ V B

b

This is important because it ensures the FOC in equation 6 still hold.
A proof of why this is true is provided in the appendix.

Finally, commit the results to the policy functions c = c0, d = d0 and
the drift variables sb, sa using their formulae.

After this process is complete, we have policies (c, d, sb, sa) defined at each
point in the state space.

3.2 Finding the drift matrix

Once the policies are known, construct the ‘drift matrix’ A that describes
the discrete, stacked HJB equation:

v = u(c) + Av

where A is made up of three types of drift: BB describes the drift in the
liquid asset, AA the drift in the illiquid one, and Λ the Poisson transitions
between idiosyncratic states.

A = BB + AA+ Λ

and where we build each separately. The provided code does this efficiently,
by exploiting the structure of the arrays and sparse matrix objects, but the
logic for each is outlined below.

Liquid drift BB Each row of BB corresponds to a point in the state–
space indexed by ijk, and relates to a point in the liquid drift policy sb,ijk.
All elements of this row are zero except, potentially, the diagonal and its two
adjacent cells; these cells have the values:[

...
sb1sb<0

bi−bi−1
−
(

sb1sb<0

bi−bi−1
+

sb1sb>0

bi+1−bi

)
sb1sb>0

bi+1−bi
...
]

11

At the two ends of the liquid grid, i.e. where i ∈ {1, I}, only one of these
drift directions is possible. That is, where i = 1 the diagonal and the cell to
its right have the values [

... − sb1sb>0

bi+1−bi

sb1sb>0

bi+1−bi
...
]

And where i = I the diagonal and the cell to its left have the values[
...

sb1sb<0

bi−bi−1
− sb1sb<0

bi−bi−1
...
]

Illiquid drift AA Each row of AA corresponds to a point in the state–
space indexed by ijk, and relates to a point in the illiquid drift policy sa,ijk.
All elements of this row are zero except, potentially, the diagonal and the
cells I positions to the left and right of the diagonal; these cells have the
values:

[
... sa1sa<0

aj−aj−1
... −

(
sa1sa<0

aj−aj−1
+ sa1sa>0

aj+1−aj

)
... sa1sa>0

aj+1−aj
...
]

At the two ends of the illiquid grid, i.e. where j ∈ {i, J}, only one of these
drift directions is possible. That is, where j = 1 the diagonal and the cell I
positions to its right have the values[

... − sa1sa>0

aj+1−aj
... sa1sa>0

aj+1−aj
...
]

And where j = J the diagonal and the cell I positions to its left have the
values

[
... sa1sa<0

aj−aj−1
... − sa1sa<0

aj−aj−1
...
]

Idiosyncratic state transitions Λ The idiosyncratic state transition ma-
trix is built the usual way, for example assuming Nz = 2 and the Poisson
transition rates out of each state are (λ1, λ2)

Λ =

[
−λ1 λ1

λ2 −λ2

]
⊗ I

Where I is a I × J identity matrix.

12

3.3 Updating the value

With the drift matrix in hand, update the value function using the implicit
method, for some choice of large ∆

vn = [I(ρ+ 1/∆)− A]−1 [u(c) + vn−1/∆
]

(9)

Finally, check convergence in v by some criterion (we use the maximum
absolute difference) and iterate if not yet converged.

3.4 Finding a good starting guess

The convergence properties of an implicit scheme like this are only local to the
solution (Barles and Souganidis, 1991). Hence, starting with a good guess is
key to finding a solution, but this can be difficult with an unfamiliar problem.
To help with this, we have found the following routine helps improve a guess
from a bad starting point, to one closer to the truth.

1. Start with a guess that, at the least, has curvature in both dimensions of
the endogenous state variables e.g. V 0 = u

(
rbb+ raa+ (1− ξ)wz

)
/ρ

2. Try to solve the problem with a very high update speed e.g. ∆ = e10.
If this converges to a solution, then there is no issue.

3. If an update fails along the way (i.e. it yields a value with Vb < 0,
complex solutions, or some other issue), then reduce the update speed
substantially to some base level, for example to ∆ = ∆ = 0.1, and start
the next round from V 0.

4. Keep updating for a while (e.g. 20 iterations) at this lower ∆, and
then store the point you get to as a new V 0, reset n = 1, and resume
updating, scaling up the ∆ again (e.g. ∆ = ∆ × exp(n)). Keep going
until either convergence to a solution, or failure, in which case return
to step 3.

We don’t have a proof for why this works, but it works very well in practice8.
8With an explicit update scheme, setting ∆ = 1 is equivalent to VFI in discrete time

if the Courant–Friedrichs–Lewy condition holds (Rendahl, 2022), and so the guaranteed
convergence properties in that environment (Stokey, 1989) apply. This is not the case
with an implicit scheme, in which ∆ has no particular significance at any value, yet seems
to work in practice.

13

4 Implementation
Matlab codes implementing the algorithm are provided online here9. We use
the following economic parameters

σ = 2, ρ = 0.05, (χ0, χ1) = (0.03, 2), ξ = 0.1

and prices

rb =

{
0.03 b ≥ 0

0.12 b < 0
, ra = 0.04, w = 4

For the idiosyncratic states we use z ∈ {0.8, 1.3} with λz′,z = 1/3. For the
endogenous states, we use a linear grid of I = 80 points for the liquid asset
on the range b ∈ [−2, 50] and a nonlinear grid of J = 70 points over the
interval a ∈ [0, 100] for the illiquid asset. Stationary solutions are plotted
below.

9As noted above, these codes owe a debt to KMV, borrowing some lines and notation.

14

15

16

0 10 20 30 40 50

b

10

20

30

40

50

60

70

80

90

100

a

Phase diagram, Low Type

0 10 20 30 40 50

b

10

20

30

40

50

60

70

80

90

100

a

Phase diagram, High Type

5 Accuracy and Stability
Coming soon.

6 Conclusion
Coming soon.

17

A Proof that c0 ∈ [cB, cF]

We wish to show that c0 ∈ [cB, cF], so that our imposition of Vb = u′ (c0) is
correct i.e. we can be sure that V 0

b is bounded by [V F
b , V B

b].

To start, note that we have defined

c0 = x− g(d0, a) (10)

gd(d
F , a) =

Va

u′(cF)
(11)

gd(d
B, a) =

Va

u′(cB)
(12)

gd(d
0, a) =

Va

u′(c0)
(13)

where x = rbb+ (1− ξ)wz > 0 stands in for liquid cash inflows. And also if
we are calculating c0, we know that optimal policies based on forward and
backward liquid derivatives produced liquid drift counter to their assumed
directions

ḃF = x− cF − g(dF , a) < 0 (14)

ḃB = x− cB − g(dB, a) > 0 (15)

The first step is to show c0 ≥ cB.

1. To begin, suppose c0 < cB.

(a) Combining their no–arbitrage equations (12 & 13) shows d0 < dB,
by the increasing nature of gd(d, a)

gd(d
0, a) =

Va

u′(c0)
<

Va

u′(cB)
= gd(d

B, a)

d0 < dB

(b) Combining their drift equations (10 & 15) shows d0 > dB, by the
increasing nature of g(d, a)

x− g(d0, a) < x− g(dB, a)− ḃB

g(d0, a) > g(dB, a)

d0 > dB

18

This is a contradiction.

2. Now suppose c0 ≥ cB.

(a) Combining their no–arbitrage equations (12 & 13) shows d0 ≥ dB,
by the increasing nature of gd(d, a)

gd(d
0, a) =

Va

u′(c0)
≥ Va

u′(cB)
= gd(d

B, a)

d0 ≥ dB

(b) Combining their drift equations admits d0 ≥ db.

x− g(d0, a) > x− g(dB, a)− ḃB

g(d0, a) < g(dB, a) + ḃB

Trying d0 ≥ db, and using the increasing nature of g(d, a)

g(dB, a) ≤ g(d0, a) < g(dB, a) + ḃB

0 ≤ ḃB

Which is established by equation (15).

There is no contradiction here, so c0 ≥ cB.

Equivalent steps establish c0 ≤ cF , by symmetry. Hence c0 ∈ [cB, cF] QED.

Lemma that d0 ∈ [dB, dF] Given that c0 ∈ [cB, cF], for a given Va (assum-
ing illiquid drift is not affected by d choice), then we know

Va

u′(cB)
≤ Va

u′(c0)
≤ Va

u′(cF)

and therefore by the no–arbitrage FOC and increasing gd(d, a) in d, we know

dB ≤ d0 ≤ dF

19

References
Achdou, Y., J. Han, J.-M. Lasry, P.-L. Lions, and B. Moll (2022):

“Income and wealth distribution in macroeconomics: A continuous-time
approach,” The Review of Economic Studies, 89, 45–86.

Barles, G. and P. E. Souganidis (1991): “Convergence of approximation
schemes for fully nonlinear second order equations,” Asymptotic analysis,
4, 271–283.

Kaplan, G., B. Moll, and G. L. Violante (2018): “Monetary policy
according to HANK,” American Economic Review, 108, 697–743.

Rendahl, P. (2022): “Continuous vs. discrete time: Some computational
insights,” Journal of Economic Dynamics and Control, 144, 104522.

Stokey, N. L. (1989): Recursive methods in economic dynamics, Harvard
University Press.

20

	Introduction
	The model
	The HJB Equation & analytical solution

	Numerical Solution
	Updating the policy functions: the nested–drift algorithm
	Finding the drift matrix
	Updating the value
	Finding a good starting guess

	Implementation
	Accuracy and Stability
	Conclusion
	Proof that c0[cB,cF]

