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This note describes a deterministic human capital accumulation problem with one asset in

continuous time. Agents can accumulate financial assets and human capital by dividing their

time between labor and education. Human capital is accumulated via a DRS production

function and depreciates over time. Labor income receives a wage per unit of time worked

and per unit of human capital. The code is human_capital.m.

1 Model Setup

The household solves the following problem:

max
{ct,st}t≥0

ˆ ∞
0

e−ρtu(ct)dt s.t.

ȧt = rat + wht(1− st)− ct
ḣt = θ(stht)

α − δht
at ≥ a

Here at denotes wealth, ht human capital, ct consumption and st the time units spent on

education. The interest rate is denoted by r and w denotes the wage. δ is the human capital

depreciation rate and θ and α are the parameters of the human capital production function

where θ > 0 and α ∈ (0, 1). There is a lower bound on wealth denoted by a. Utility is

assumed to be CRRA with parameter σ

u(c) =

log(c) if σ = 1

c1−σ/(1− σ) otherwise
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2 Recursive formulation

2.1 HJB Equation

The HJB equation for the above problem is

ρV (a, h) = max
c,s

u(c) + Va(a, h)[ra+ wh(1− s)− c]

+ Vh(a, h)[θ(sh)α − δh]
(1)

and the first order conditions follow:

u′(c) = Va(a, h) (2)

Va(a, h)wh = Vh(a, h)[θαsα−1hα] (3)

2.2 State constraint

The boundary constraint at ≥ a implies ra+wh(1−s(a, h))−c(a, h) ≥ 0 where s(a, h) satisfies

(3) evaluated at a. Using the first order conditions yields Va(a, h) ≥ u′(ra+wh(1−s(a, h))).

A similar condition is imposed on the upper end of the a space.

3 Numerical solution

3.1 Main loop

See human_capital.m. To solve the HJB equation (1). We are using an implicit upwind finite

difference method. We discretize the state space denoting the grid points by ai, i = 1, . . . , Na

and hj, j = 1, . . . , Nh, with ∆a−i = ai−ai−1 and ∆a+i = ai+−ai and similarly for the h-space.

Finally

Vi,j ≡ V (ai, hj).
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We approximate the derivatives of the value function with respect to a and h with either a

forward or backward-difference approximation

∂Fa Vi,j =
Vi+1,j − Vi,j

∆a+i
(4)

∂Ba Vi,j =
Vi,j − Vi−1,j

∆a−i
(5)

∂Fh Vi,j =
Vi,j+1 − Vi,j

∆h+j
(6)

∂Bh Vi,j =
Vi,j − Vi,j−1

∆h−i
(7)

Now the discretized version of (1) is

V n+1
i,j − V n

i,j

∆
+ ρV n+1

i,j = u(cni,j) + ∂Fa V
n+1
i,j

[
µFFa;i,j1

FF
a;i,j + µFBa;i,j1

FB
a;i,j

]
+ ∂Ba V

n+1
i,j

[
µBFa;i,j1

BF
a;i,j + µBBa;i,j1

BB
a;i,j

]
+ ∂Fh V

n+1
i,j

[
µFFh;i,j1

FF
h;i,j + µBFh;i,j1

BF
h;i,j

]
+ ∂Bh V

n+1
i,j

[
µFBh;i,j1

FB
h;i,j + µBBh;i,j1

BB
h;i,j

]
(8)

and the first order conditions

u′
(
cni,j
)

= ∂aV
n
i,j (9)

∂aV
n
i,jwh = ∂hV

n
i,j[θαs

α−1
i,j hα] (10)

where the µa and µb terms represent the drift of the endogenous state variables, with the

convention that µFBa = ra+wh(1−s(a, h))−c(a, h) is computed using the forward difference

in the a dimension and the backward difference in the h dimension and so on. The indicator

functions pick the combination of backward/forward differences consistent with the upwind

scheme, e.g. 1FBa;i,j equals to 1 if at the point (i, j) we have µa > 0 and µh ≤ 0 when using

the FB approximation.

Finally, given a guess for the value function and a choice of which finite difference ap-

proximation to choose, the first order conditions in (9) and (10) implicitly define the choice

for cni,j and sni,j.

Similarly to Achdou et al. (2017), given equation (4), the discretized value function can
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be put on a vector V n of size (Na ×Nh)× (1) and the equation can be stacked into

V n+1 − V n

∆
+ ρV n+1 = un + AnV n+1

where the matrix A of size (Na×Nh)× (Na×Nh) picks up the terms in brackets in the first

four lines of equation (4).

3.2 Imposing boundary conditions

Boundary conditions are imposed at amin, amax, hmin and hmax, where those values are the

upper and lower bounds of the state-space. For illustration we describe here the boundary

conditions imposed at amin = a. We showed in section 2.2 that the derivative of the value

function at a must satisfy Va(a, h) ≥ u′(ra + wh(1 − s(a, h))). When this expression holds

with equality and using CRRA preferences, we have ra+wh(1−s(a, h)) = Va(a, h)−
1
σ . Now,

using equation (3) to get an expression for s(a, h) we get the boundary condition

ra+ wh

[
1−

(
θα

w

Vh
Vh
hα−1

) 1
1−α
]

= Va(a, h)−
1
σ

Now, for each j = 1, . . . , Nh, we solve for ∂Ba V1,j in the nonlinear equation

ra1 + whj

[
1−

(
θα

w

∂Fh V1,j
∂Ba V1,j

hα−1j

) 1
1−α
]

= ∂Ba V
− 1
σ

1,j (11)

Having obtained ∂Ba V1,j we compute µBFh;1,j. If µBFh;1,j ≥ 0 we update µBFa;1,j and µBFh;1,j. Otherwise,

we solve equation (11) using ∂Bh V1,j instead of ∂Fh V1,j and update µBBa;1,j and µBBh;1,j if the

resulting µBBh;1,j is non-positive. If neither µBFh;i,j ≥ 0 nor µBBh;i,j ≤ 0, then the drift values are

set to zero.
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4 Results
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Figure 1: Policy Functions
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Figure 2: Transition Dynamics
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